Spectral Dimensionality Reduction

نویسندگان

  • Yoshua Bengio
  • Olivier Delalleau
  • Nicolas Le Roux
  • Jean-Francois Paiement
  • Pascal Vincent
  • Marie Ouimet
چکیده

© 2004 Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux, Jean-Francois Paiement, Pascal Vincent, Marie Ouimet. Tous droits réservés. All rights reserved. Reproduction partielle permise avec citation du document source, incluant la notice ©. Short sections may be quoted without explicit permission, if full credit, including © notice, is given to the source. Série Scientifique Scientific Series 2004s-27

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

انجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی

Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...

متن کامل

Dimensionality Reduction of Multi-spectral Images for Color Reproduction

A new nonlinear dimensionality reduction method for multi-spectral images was presented to solve the problem brought by high dimensionality of multi-spectral images during color reproduction. Firstly, according to the characteristics of human visual system, the CIE standard observer color matching functions were weighted to the source spectral reflectance and then a principal component analysis...

متن کامل

Spatial-Spectral Dimensionality Reduction of Hyperspectral Imagery with Partial Knowledge of Class Labels

Laplacian Eigenmaps (LE) and Schroedinger Eigenmaps (SE) are effective dimensionality reduction algorithms that are capable of integrating both the spatial and spectral information inherent in a hyperspectral image. In this paper, we consider how to extend LEand SE-based spatial-spectral dimensionality reduction algorithms to situations where partial knowledge of class labels exists, for exampl...

متن کامل

2D Dimensionality Reduction Methods without Loss

In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...

متن کامل

Distributed Spectral Dimensionality Reduction for Visualizing Textual Data

We use a Spectral Clustering model to formulate a distributed implementation using SPARK of Laplacian Eigenmaps that we call Distributed Spectral Dimensionality Reduction (DSDR). We evaluate DSDR to visualize conceptual clusters of terms in textual data from 2149 short documents written by online contributors to a State Department website. We compare DSDR with PCA, MultiDimensional Scaling, ISO...

متن کامل

Compressed Spectral Regression for Efficient Nonlinear Dimensionality Reduction

Spectral dimensionality reduction methods have recently emerged as powerful tools for various applications in pattern recognition, data mining and computer vision. These methods use information contained in the eigenvectors of a data affinity (i.e., item-item similarity) matrix to reveal the low dimensional structure of the high dimensional data. One of the limitations of various spectral dimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004